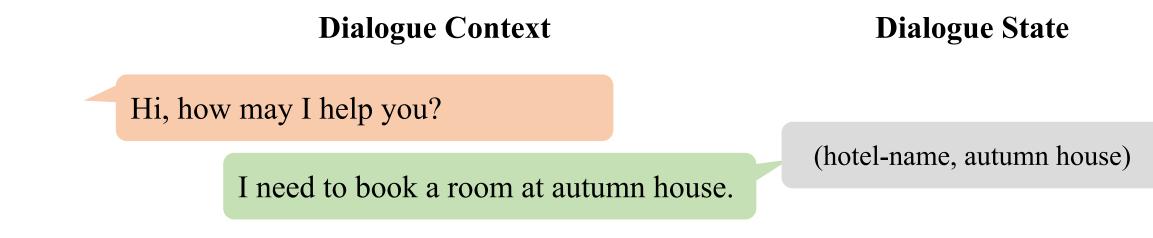
ASSIST: Towards Label Noise-Robust Dialogue State Tracking

Fanghua Ye, Yue Feng and Emine Yilmaz

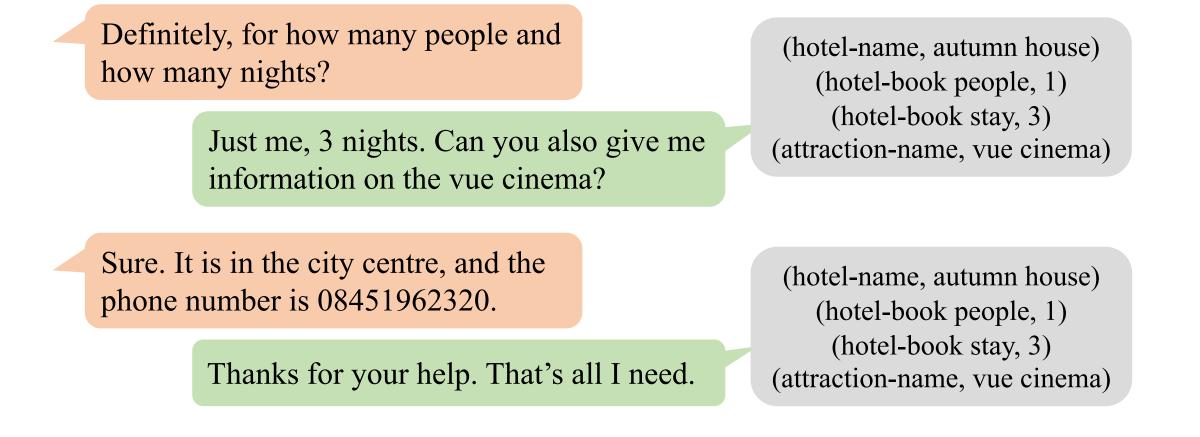
University College London, UK

Introduction & Motivation

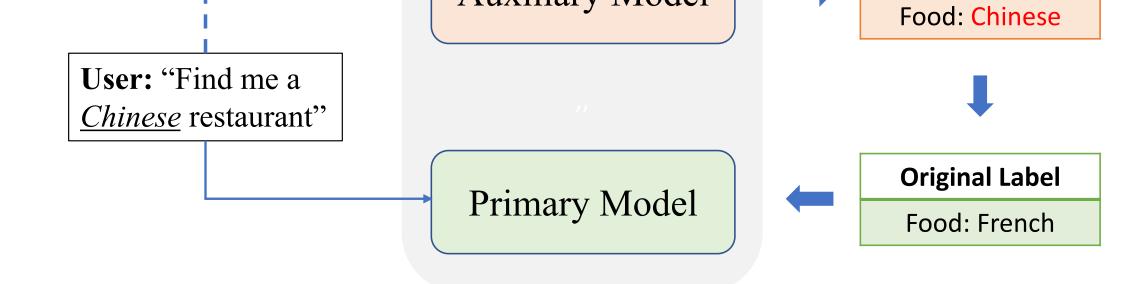
The dialogue state tracker is an essential component of task-oriented dialogue systems. It aims to keep track of users' intentions at each turn of the conversation



- We propose a general framework ASSIST to robustly train dialogue state tracking models from noisy labels
- We introduce an auxiliary model, which is trained on a small clean dataset, to generate pseudo labels for each sample in the noisy training set



- Dialogue state annotations are error-prone. Without taking noisy annotations into consideration, existing models can only achieve sub-optimal performance
- It is costly and labor-intensive to collect large-scale high-quality dialogue datasets



 \clubsuit We linearly combine the pseudo labels and vanilla labels (their one-hot vector representations) by a parameter α

$$\boldsymbol{V}_{combined} = \alpha \boldsymbol{V}_{pseudo} + (\mathbf{1} - \alpha) \boldsymbol{V}_{vanilla}$$
(1)

 The cross entropy loss objective based on the combined labels can be decomposed into two parts as below

$$\mathcal{L}_{combined} = \alpha \mathcal{L}_{pseudo} + (\mathbf{1} - \alpha) \mathcal{L}_{vanilla}$$
(2)

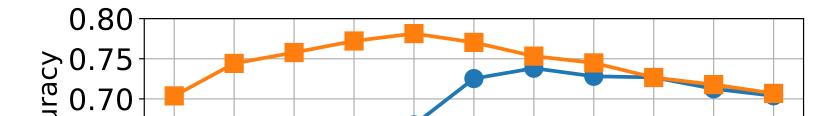
Theoretical Analysis

(3)

(4)

• We define the approximation error of any noisy labels V_{noisy} to the unknown clean labels V_{clean} using mean squared error (MSE)

• $Y_{V_{combined}}$ is a concave function of α



- $Y_{\boldsymbol{V}_{noisy}} = \frac{\mathbf{I}}{|\mathcal{D}_n||\mathcal{S}|} \sum_{\mathcal{X}_t \in \mathcal{D}_n} \sum_{s \in \mathcal{S}} E_{\mathcal{D}_c}[\|\boldsymbol{V}_{noisy} \boldsymbol{V}_{clean}\|_2^2]$
- * It can be shown that the optimal approximation error with respect to the combined labels $V_{combined}$ is smaller than that of the vanilla labels $V_{vanilla}$ and pseudo labels V_{pseudo} , i.e.,

$$\min_{\alpha} \mathbf{Y}_{\mathbf{V}_{combined}} < \min\{\mathbf{Y}_{\mathbf{V}_{pseudo}}, \mathbf{Y}_{\mathbf{V}_{vanilla}}\}$$

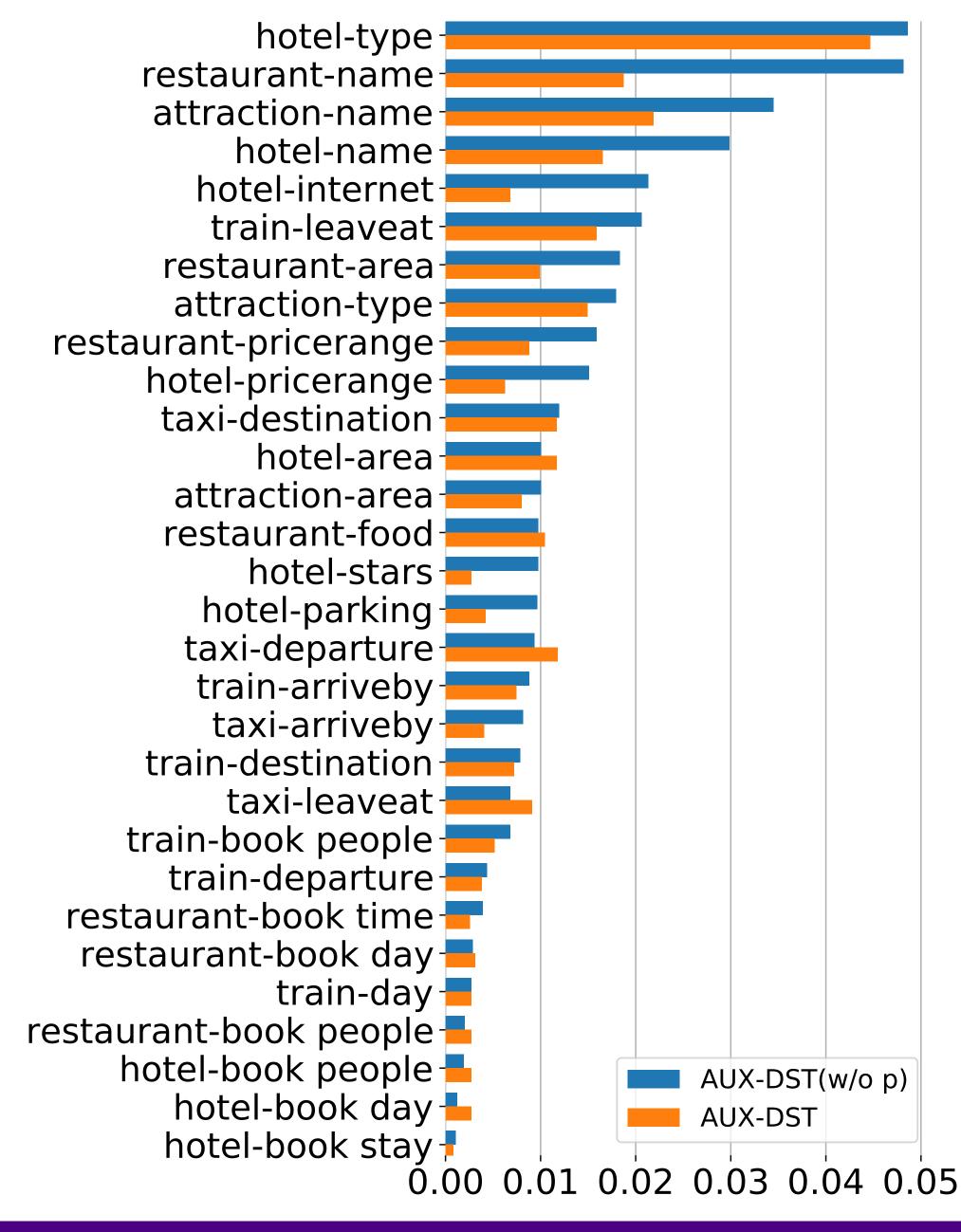
 $\begin{array}{c} 0.65\\ 0.60\\ 0.55\\ 10.50\\ 0.45\\ 0.40\\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\$

Experimental Results

 All primary models achieve the best performance when both the vanilla labels and pseudo labels are used for training

Drimary	Labels		MultiWOZ 2.0			MultiWOZ 2.4		
Primary Models	Vanilla	Pseudo	Joint Goal(%)	Joint Turn(%)	Slot(%)	Joint Joint Goal(%) Turn(%)		Slot(%)
	 ✓ 	×	45.14	77.86	96.71	66.78	87.81	98.38
SOM-DST	×	\checkmark	67.06	87.95	98.47	68.69	88.41	98.55
	 ✓ 	\checkmark	70.83	89.14	98.61	75.19	91.02	98.84
	 ✓ 	×	48.30	78.91	97.10	73.62	90.45	98.85
STAR	×	\checkmark	70.66	85.93	98.67	71.01	86.31	98.69
	 ✓ 	\checkmark	74.12	88.93	98.86	79.41	91.86	99.14
		X	45.66	78.76	96.95	70.37	89.31	98.67

 Most slots have lower error rates with the help of the pseudo labels



AUX-DST	×	\checkmark	70.39	86.28	98.67	70.68	86.82	98.68	
	✓	\checkmark	73.82	88.29	98.84	78.14	91.03	99.07	

 Directly combining the noisy training set with the small clean dataset can also lead to better results, however, the performance improvement is lower than our proposed approach

	Training Settings	Joint Goal (%) MultiWOZ MultiWOZ		
		2.0	2.4	
SARIJ.	Noisy Train	45.66	71.80	
	Noisy Train + Small Clean	50.75	76.89	
1-12784	Noisy Train + Pseudo Labels	73.82	78.47	
Paper	Noisy Train + Small Clean + Pseudo Labels	74.96	78.92	

ACL 2022